EGC220
 Class Notes
 2/21/2023

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

Test 1:

- Number systems
- Convert any base to any base
- Quick conversion between base $2,4,8$, and 16
- Add, subtract, multiply in any base
- Logic gate implementation of a Boolean function
- Boolean properties and laws
- Simplification of Boolean algebra using Boolean laws
- Representing Boolean functions in terms of
- Sum of min-terms, product of max-terms, standard sum of products, standard product of sums, minimum sum of products, minimum product of sums
- Representing Boolean functions using all NAND or NOR gates.
- Simplification using K-map (up to 5 variables)
- SOP, POS, Standard SOP and POS, Min. SOP and POS
- Design of combinational circuits

Simplification criteria in K-map

$\sqrt{1}$. Least number of groups.
2. Make each group as large as possible.
3. Make sure each group is essential

$$
\bar{x} \bar{y} \bar{z}+x \bar{y} \bar{z}+\bar{y} y \bar{z}+x y \bar{z}
$$

$$
\underbrace{m_{2} \quad n_{6}^{n_{6}}}_{\overline{\bar{n}} \quad n_{0} \quad n_{4}}
$$

$$
\bar{y} \bar{z}(\bar{x}+x)+y \bar{z}(\bar{x}+x)
$$

$$
\bar{y} \bar{z}+y \bar{z}=\bar{z}(\bar{y}+y)=\bar{z}
$$

$\begin{gathered}x \bar{y} \bar{z} \\ w_{4} \\ w_{n_{5}} \\ n_{5} \bar{z} \\ z\end{gathered}=x \bar{y}(\bar{z}+z)=x \bar{x}$

Simplify the following Boolean functions using three variables K-maps and express your answer in minimum sum of product
a. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma \mathrm{m}(0,1$,
$\operatorname{Min}_{\text {sop }}$

Musso.p $F=B C+A C+A B$ $\bar{F}=\bar{F} \bar{B}+\bar{B} \bar{C}+\bar{A} \bar{C} \rightarrow F(A+B)(B+C)(A+C)$

2. Simplify the following Boolean functions using three variables K-maps and express your answer in minimum sum of products and minimum product of sums

$$
\begin{aligned}
& F=\bar{A}+B C \text { MiA. SOP } \\
& \bar{F}=A \bar{C}+A \bar{B} \\
& F=(\bar{A}+C)(\bar{A}+B) \\
& F=\bar{Z}+\bar{X} y \\
& \bar{F}=\bar{Y} \bar{Z}+X \cdot \bar{z} \\
& F=(y+\bar{z})(\bar{X}+\bar{z}) \\
& \text { M.A.PO.S }
\end{aligned}
$$

